Эйлера уравнение - definição. O que é Эйлера уравнение. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é Эйлера уравнение - definição

ОДНО ИЗ ОСНОВНЫХ УРАВНЕНИЙ ГИДРОДИНАМИКИ ИДЕАЛЬНОЙ ЖИДКОСТИ
Эйлера уравнение

Эйлера уравнение         

1) дифференциальное уравнение вида

, (*)

где ao,..., an-постоянные числа; при х>0 уравнение (*) подстановкой х = et сводится к линейному дифференциальному уравнению (См. Линейные дифференциальные уравнения) с постоянными коэффициентами. Изучалось Л. Эйлером с 1740. К уравнению (*) сводится подстановкой x' = ax + b уравнение

.

2) Дифференциальное уравнение вида

,

где X (x) = a0x4 + a1x3 + a2x2 + a3x + a4, Y (y) = а0у41у32у23у +a4. Л. Эйлер рассматривал это уравнение в ряде работ начиная с 1753. Он показал, что общее решение этого уравнения имеет вид F (х, у) = 0, где F (х, у) - симметричный многочлен четвёртой степени от х и у. Этот результат Эйлера послужил основой теории эллиптических интегралов.

3) Дифференциальное уравнение вида

'

служащее в вариационном исчислении (См. Вариационное исчисление) для разыскания экстремалей интеграла

.

Выведено Л. Эйлером в 1744.

Уравнение Эйлера — Лагранжа         
Уравнения Эйлера-Лагранжа; Уравнения Лагранжа — Эйлера; Уравнения Эйлера — Пуассона; Уравнения Эйлера — Лагранжа; Эйлера — Лагранжа уравнение; Уравнение Лагранжа — Эйлера
Уравне́ния Э́йлера — Лагра́нжа (в физике также уравнения Лагранжа — Эйлера, или уравнения Лагранжа) являются основными формулами вариационного исчисления, c помощью которых ищутся стационарные точки и экстремумы функционалов. В частности, эти уравнения широко используются в задачах оптимизации и совместно с принципом стационарности действия используются для вычисления траекторий в механике.
Уравнения Эйлера         
ОПИСЫВАЮТ ВРАЩЕНИЕ ТВЕРДОГО ТЕЛА В СИСТЕМЕ КООРДИНАТ, СВЯЗАННОЙ С САМИМ ТЕЛОМ
Уравнения Эйлера (механика); Эйлера уравнения
В физике, Уравнения Эйлера описывают вращение твердого тела в системе координат, связанной с самим телом.

Wikipédia

Уравнение Эйлера

Уравнение Эйлера — одно из основных уравнений гидродинамики идеальной жидкости. Названо в честь Л. Эйлера, получившего это уравнение в 1752 году (опубликовано в 1757 году). По своей сути является уравнением движения жидкости. До сих пор неизвестно, существует ли гладкое решение уравнения Эйлера в трёхмерном случае, начиная с заданного момента времени.